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Abstract- To  extract information from 

measurements distributed over a data space it is 

useful to find an optimal way to partition the 

measurements and fit a simple model to each of 

the  partition elements.  This paper presents an 

algorithm for finding such optimal segmentation 

models, with examples from several fields. 

 

I. Introduction: The Data 

Much data in the fields of astrophysics, Earth 

and space science are in the form of 

measurements distributed over a data space of 

known dimension. The following examples 

underscore the great variety of such situations: 

  time series data – 1D 

 spectra -- 1D 

 image data -- 2D 

 redshift galaxy surveys – 3D 

 X- and -ray photon data -- 4D+ 

In the last case the dimensions are space, time, 

energy, and possibly additional data. The 

measurements may refer to a physical quantity 

measured over a predefined sub-interval of the 

data space.  The sub-interval can be predefined, 

as in the case of pixels or bins, or defined by the 

data themselves (c.f. the Voronoi cell examples 

below). Or one may have point data, where the 

recorded information comprises the actual 

locations of the points in the data space – 

typically, in the form of positional coordinates.  

An example of this case is a map of high-energy 

radiation, in the form of positions of photons 

on the sky.  We will see that one way to deal 

with such data modes is to construct analogs of 

pixels in the form of Voronoi cells, much like 

data-defined bins containing one event or point.    

II. The Density Function 

For the class of data modes outlined above, 

science analysis can almost always be based on 

a density estimation procedure. The term 

density is to be taken in a general sense, 

including radiation intensity (in space or as a 

function of wavelength), number of objects per 

unit volume, or any other quantity expressing 

signal strength per unit volume of data space. 

The original density estimation is typically 

followed by a process to extract quantitative 

(local or global) information from the density 

map. For example, one may want to identify 

specific localized sources, clusters of sources, 

or other more global structures.  

 

III. The 1D Algorithm 

A optimal segmentation algorithm, new but 

with a dynamic programming heritage dating 

back to Richard Bellman in the 1950's, can be 

used to detect structure on any scale in 

sequential data. When the model fitness 

function to be optimized is the marginal 

posterior of the piece-wise constant model, the 

method (called Bayesian Blocks) has been 

applied to a number of problems in 1D 



astronomical data analysis. The figure below 

depicts the Bayesian block representation of a 

time series from a gamma-ray burst observed by 

the NASA Swift mission. The raw data consist 

of arrival times of individual photons, too 

numerous to plot individually.  The blocks 

indicated by horizontal solid lines form the 

optimal step-function model for the photon – 

i.e., that which maximizes the posterior 

probability over all models consisting of 

constant Poisson rates in blocks.  The number 

of blocks is determined by the automatic 

“Occam factor” of Bayesian analysis.  It is 

mediated by a prior distribution for the number 

of blocks, but is not based on an ad hoc 

complexity penalty, as in other methods. 

 

Figure 1: Bayesian block representation of a gamma-ray 
burst time profile. 

 

Note that the background level is not modeled 

separately, but is indicated by the first block, 

presumed to cover the time before the burst 

actually started. 

We have recently explored several other cost 

functions (Scargle, Norris and Jackson, in 

preparation); a simple maximum likelihood 

quantity that has a useful scaling property. 

 

IV. The 2D+ Algorithm 

 

For cost functions that have a simple convexity 

property, extension to higher dimensional data 

spaces is immediate (Jackson and Scargle, 

2007).   Begin with the Voronoi tessellation of 

the data points, and order the cells by area (or 

by volume in higher dimensional problems).  

This one dimensional array is passed to the 

algorithm described above.  The resulting 1D 

blocks may contain several disconnected 

fragments in the original higher dimensional data 

space, but it is straightforward to identify such 

block fragments and thereby construct a set of 

simply connected blocks.  The job is not  then 

complete, but requires assembly of the blocks 

in to scientifically meaningful structures.  In 

most cases this step requires the automated 

invocation of domain knowledge (e.g., point 

sources must be circularly symmetric and 

otherwise consistent with the known point 

spread function of the instrument). 

 

V. Applications 

The optimal segmentation algorithm described 

above, yielding the best-fitting piecewise 

constant model of the data, has been applied in 

problems of various dimensions. Examples of 

such analysis include: 

1) Light-curves of gamma-ray bursts (as in the 

figure above). 

2) Cluster and other structural analysis of the 

large scale distribution of galaxies with the 

Sloan Digital Sky Survey  

3) Point source identification and 

characterization in gamma ray data (for 

GLAST, the Gamma Ray Large Area Space 

Telescope, to be launched in November, 

2007)  

4) Anomaly detection for a homeland security 

problem (detectiona of anomalous events in 

domestic water distribution systems)  

Case 1) was depicted in Figure 1 above. Figure 

2 is a blocky estimate of the density of galaxies 



in the Universe, using data from the Sloan 

Digital Sky Survey redshift catalog.  Of course 

the full aspect of the 3D distribution can’t be 

seen here, but one does get an impression of a 

complex web of connected structures of various 

shapes and sizes – clusters, strings, sheets and 

voids. 

 

Figure 2: Bayesian block representation of the large-scale 
structure in the galaxy distribution, based on a portion of 
SDSS redshift data. 

 

Detection of point sources in gamma-ray 

survey data such as will be produced by the 

GLAST mission is complicated by various 

factors: spatially the photon coordinates lie on 

a sphere, not a flat plane; each photon has a 

different point-spread function depending on its 

energy; point and extended sources, overlapping 

each other, need to be disentangled; transient 

and rapidly variable sources need to be detected 

and studied; and more. 

Figure 3 is the first step in a method for 

detecting sources, both constant and variable.  It 

is a tessellation of the sky into triangles, closely 

related and informationally equivalent to the 

Voronoi tessellation.  Except for representing 

segments of great circles as straight lines, this 

construction is exact.  It is based on embedding 

the 2D points in a 3D spherical surface and 

computing the convex hull of the resulting 

configuration. 

 

The diagonal array of small Delaunay triangles 

occurs in the galactic plane, where sources are 

more numerous. 

 

 
Figure 3: The Delaunay triangulation of synthetic 
GLAST photon data on the celestial sphere. This 
construction contains the same information (local density 
and its gradient, and adjacency information among the 
photons) as does the Voronoi tessellation, and is easily 
calculated on the sphere. 

Point and extended sources can be identified by 

a 2D optimal segmentation analysis of this set 

of photon cells, much as in Fig. 2. But to detect 

and analyze variability we need to introduce 

time as a third dimension.  A convenient way to 

do this is shown in Fig. 4: time is represented as 

a radial coordinate.  The start time and end time 

of the observations lie on a unit sphere and a 

sphere of some larger radius.  Constant sources 

can be seen by eye in this display, in the form 

of clusters of points lying closely on radii 

between the spheres. Transient sources lie on 

subsegments of the radii, and variable sources 

have a lumpy distribution on the radii 

corresponding to their positions on the celestial 

sphere. 



 

Figure 4: A spherical representation of time and location 
on the celestial sphere. 

 

 

Figure 5: Voronoi tessellation of 3D (space-time) 
coordinates of synthetic gamma-ray photons. Only a few 
of the Voronoi cells and the points defining them are 
plotted for ease of visualization. 

Then one can perform a 3D Voronoi tessellation of the 
photons, as depicted in Fig. 5.  Block analysis of these 
cells then can be used to detect and characterize variable 
sources.  For example, Fig. 6 shows a dynamic source 
detection result for synthesis of 55 days of GLAST data. 
Early in the mission, only the brightest sources have 
been detected, but as time goes along, more and more 
sources achieve a statistically significant detection, and 
variable sources can be characterized. 

 
Figure 6: A synthetic real-time list of sources that might 
be detected in 55 days of the GLAST mission.  The 
color scale represents the number of photons in the most 
intense block of the  (point) sources.  The vertical axis is 
an arbitrary source identification index. 
 

I conclude with a somewhat different example, 

namely a way to detect anomalous behavior in 

multidimensional data.  The underlying 

principle is simply that anomalous points by 

defintion lie in a region of the data space that 

has not been populated very much by the 

previous “normal” data.  Hence the Voronoi 

cells of the anomalous points will be larger on 

average than those of normal points.  One 

simply tessellates the normal or training data, 

establishes a threshold of Voronoi cell volume, 

and deems a new point with a cell volume that 

exceeds threshold as anomalous.  This approach 

was developed as part of a project to monitor 

multivariate water quality data for possible 

intrusive events. 

 

Acknowledgements: I am grateful to Jay Norris 

and Brad Jackson for various contributions, and 

to members of the Gamma Ray Large Area 

Space Telescope (GLAST) project for 

encouragement and simulated data. 

 

References: 

 

Jackson, Brad; Scargle, Jeffrey D.; 

Barnes, David; Arabhi, Sundararajan; 

Alt, Alina; Gioumousis, Peter; Gwin, Elyus; 

Sangtrakulcharoen, Paungkaew; Tan, Linda; 



Tsai, Tun Tao, An Algorithm for Optimal 

Partitioning of Data on an Interval, IEEE Signal 

Processing Letters, (2005), 12, 105-108. 

 

Scargle, J. D., Norris, J., and Jackson, B, 

(2007), "Studies in Astronomical Time Series 

Analysis. VI.  Optimum Partition of the 

Interval: Bayesian Blocks, Histograms, and 

Triggers",  (in preparation) 

 

Jackson, B, and Scargle, B, “Optimal 

Partitioning in Higher Dimensions,” (2007), in 

preparation. 


